Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.

Identifieur interne : 000114 ( Main/Exploration ); précédent : 000113; suivant : 000115

LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.

Auteurs : Chia-Hua Lin [Taïwan] ; Ying-Chieh Pan [Taïwan] ; Nai-Hua Ye [Taïwan] ; Yu-Ting Shih [Taïwan] ; Fan-Wei Liu [Taïwan] ; Chao-Ying Chen [Taïwan]

Source :

RBID : pubmed:32662583

Abstract

Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1C ) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1C -dependent manner was demonstrated by leaf infiltration with LsGRP1C -containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.

DOI: 10.1111/mpp.12968
PubMed: 32662583
PubMed Central: PMC7411634


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.</title>
<author>
<name sortKey="Lin, Chia Hua" sort="Lin, Chia Hua" uniqKey="Lin C" first="Chia-Hua" last="Lin">Chia-Hua Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ying Chieh" sort="Pan, Ying Chieh" uniqKey="Pan Y" first="Ying-Chieh" last="Pan">Ying-Chieh Pan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Nai Hua" sort="Ye, Nai Hua" uniqKey="Ye N" first="Nai-Hua" last="Ye">Nai-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shih, Yu Ting" sort="Shih, Yu Ting" uniqKey="Shih Y" first="Yu-Ting" last="Shih">Yu-Ting Shih</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fan Wei" sort="Liu, Fan Wei" uniqKey="Liu F" first="Fan-Wei" last="Liu">Fan-Wei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chao Ying" sort="Chen, Chao Ying" uniqKey="Chen C" first="Chao-Ying" last="Chen">Chao-Ying Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32662583</idno>
<idno type="pmid">32662583</idno>
<idno type="doi">10.1111/mpp.12968</idno>
<idno type="pmc">PMC7411634</idno>
<idno type="wicri:Area/Main/Corpus">000191</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000191</idno>
<idno type="wicri:Area/Main/Curation">000191</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000191</idno>
<idno type="wicri:Area/Main/Exploration">000191</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.</title>
<author>
<name sortKey="Lin, Chia Hua" sort="Lin, Chia Hua" uniqKey="Lin C" first="Chia-Hua" last="Lin">Chia-Hua Lin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ying Chieh" sort="Pan, Ying Chieh" uniqKey="Pan Y" first="Ying-Chieh" last="Pan">Ying-Chieh Pan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Nai Hua" sort="Ye, Nai Hua" uniqKey="Ye N" first="Nai-Hua" last="Ye">Nai-Hua Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shih, Yu Ting" sort="Shih, Yu Ting" uniqKey="Shih Y" first="Yu-Ting" last="Shih">Yu-Ting Shih</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fan Wei" sort="Liu, Fan Wei" uniqKey="Liu F" first="Fan-Wei" last="Liu">Fan-Wei Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Chao Ying" sort="Chen, Chao Ying" uniqKey="Chen C" first="Chao-Ying" last="Chen">Chao-Ying Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1
<sup>C</sup>
) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1
<sup>C</sup>
-dependent manner was demonstrated by leaf infiltration with LsGRP1
<sup>C</sup>
-containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32662583</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.</ArticleTitle>
<Pagination>
<MedlinePgn>1149-1166</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.12968</ELocationID>
<Abstract>
<AbstractText>Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1
<sup>C</sup>
) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1
<sup>C</sup>
-dependent manner was demonstrated by leaf infiltration with LsGRP1
<sup>C</sup>
-containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Chia-Hua</ForeName>
<Initials>CH</Initials>
<Identifier Source="ORCID">0000-0002-8614-1095</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Ying-Chieh</ForeName>
<Initials>YC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Nai-Hua</ForeName>
<Initials>NH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shih</LastName>
<ForeName>Yu-Ting</ForeName>
<Initials>YT</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Fan-Wei</ForeName>
<Initials>FW</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Chao-Ying</ForeName>
<Initials>CY</Initials>
<Identifier Source="ORCID">0000-0003-0455-832X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">LsGRP1</Keyword>
<Keyword MajorTopicYN="Y">host-induced fungal apoptosis programmed cell death</Keyword>
<Keyword MajorTopicYN="Y">innate immune activation</Keyword>
<Keyword MajorTopicYN="Y">plant class II glycine-rich protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32662583</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.12968</ArticleId>
<ArticleId IdType="pmc">PMC7411634</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Feb;7(2):61-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Jun 13;305(4):862-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12767910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jun 29;8(1):9842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29959345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 Sep;21(9):1149-1166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32662583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Jul;4(7):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2017 Jan;254:22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27964782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12089-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Apr;104(4):340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24620722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;894:83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Oct 13;19(1):748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30316297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):535-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26607676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Oct;39(5):1493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Oct;104(10):1012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25207480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Nov 1;5(6):559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2014;5(7):722-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25513773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Aug;7(8):e1002185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 03;11(3):e0150583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26939065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Apr;31(4):403-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29135338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Apr 16;20(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30995767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2019 Nov;100(4):661-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31350933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Mar;64(5):1249-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Feb;22(2):333-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jul;23(7):613-622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29724660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2017 Feb;12(2):e1191733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28125320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Nov;204(3):438-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25312607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jul;98(7):830-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2018 Dec 07;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30544557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 11;5:611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):614-636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Oct;114(6):1349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24984713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 28;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Feb;123:392-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29304484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 18;6:26144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Apr;8(4):521-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):41-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Aug;50:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30861483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1715-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Mar;109(3):332-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30451636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Aug;20(8):1163-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31305008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:485-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28226238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2018 May 8;2018:4701275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29854084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Oct;18(10):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2017 Nov;101(22):8129-8138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28965249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Lin, Chia Hua" sort="Lin, Chia Hua" uniqKey="Lin C" first="Chia-Hua" last="Lin">Chia-Hua Lin</name>
</noRegion>
<name sortKey="Chen, Chao Ying" sort="Chen, Chao Ying" uniqKey="Chen C" first="Chao-Ying" last="Chen">Chao-Ying Chen</name>
<name sortKey="Liu, Fan Wei" sort="Liu, Fan Wei" uniqKey="Liu F" first="Fan-Wei" last="Liu">Fan-Wei Liu</name>
<name sortKey="Pan, Ying Chieh" sort="Pan, Ying Chieh" uniqKey="Pan Y" first="Ying-Chieh" last="Pan">Ying-Chieh Pan</name>
<name sortKey="Shih, Yu Ting" sort="Shih, Yu Ting" uniqKey="Shih Y" first="Yu-Ting" last="Shih">Yu-Ting Shih</name>
<name sortKey="Ye, Nai Hua" sort="Ye, Nai Hua" uniqKey="Ye N" first="Nai-Hua" last="Ye">Nai-Hua Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32662583
   |texte=   LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32662583" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020